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Bursting as an emergent phenomenon in coupled chaotic maps
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A two-dimensional map exhibiting chaotic bursting behavior similar to the bursting electrical activity ob-
served in biological neurons and endocrine cells is examined. Model parameters are changed so that the
bursting behavior is destroyed. We show that bursting can be recovered in a population of such nonbursting
cells when they are coupled via the mean field. The phenomenon is explained with a geometric bifurcation
analysis. The analysis reveals that emergent bursting in the network is due to coupling alone and is very robust
to changes in the coupling strength, and that heterogeneity in the model parameters does not play a role.
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I. INTRODUCTION

In the context of this paper, an emergent phenomenon
phenomenon observed in a population of cells that canno
predicted readily from the properties of its individual co
stituents. Emergent phenomena, such as the generatio
oscillations from nonoscillatory cells via gap-junctional co
pling @1–4#, have been of interest for some time in neurob
logical and endocrine systems. Neurons and endocrine
rarely act alone, but rather as members of a population c
nected together via gap-junctional or synaptic coupli
Thus, the electrical activity observed in the population is
result of the properties of individual cells as well as of t
nature of the coupling.

In this paper, we are interested in emergent bursting fr
nonbursting cells. Bursting is a complex oscillation of t
membrane potential of cells, characterized by a periodic
ternation between active and silent phases. During the s
phase, the membrane potential is at a quasisteady s
whereas during the active phase it undergoes rapid osc
tions. Bursting oscillations are commonly seen to be the
mary mode of behavior in a wide variety of neurons a
endocrine cells, such as pancreaticb cells @5#, hippocampal
pyramidal neurons@6#, and thalamic neurons@7#.

Most models describing bursting in single cells consist
a system of nonlinear ordinary differential equations, and
dynamics of these systems are well understood. Follow
the analysis of Rinzel@8,9#, bursting activity is typically
viewed as being the result of the interaction of a fast an
slow subsystem. The fast subsystem can exhibit rapid o
lations ~active phase! and stable steady states~silent phase!.
The slow subsystem is responsible for switching the dyna
ics of the fast subsystem between these two states in a
odic fashion.

There are now several theoretical papers in which bu
ing as an emergent phenomenon, resulting from g
junctional coupling of nonbursting cells, has been dem
strated. The nonbursting cells are related to the bursting c
in the sense that the parameter regimes in which each
exists are relatively close. Thus, changes in a few key
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rameters can turn a bursting cell into a nonbursting cell, a
vice versa. Implications of the phenomenon have been
cussed in the context of electrical activity of pancreaticb
cells; however, they are equally applicable to compara
systems. Two types of emergent bursting must be dis
guished. First, Smolenet al. @10# proposed the heterogeneit
hypothesis, in which cell parameters are randomly distr
uted so that only a few cells can burst. When coupled dif
sively, the population as a whole takes on the properties
the average cell, provided the coupling strength is su
ciently strong. As long as the average cell bursts, the po
lation bursts. A similar concept was put forward by Ca
wright @4# and by Manor et al. @3# in their studies of
emergent oscillations from silent cells by gap-junctional co
pling. Second, Sherman and Rinzel@2# and Sherman@11#
demonstrated that identical nonbursting cells~so the average
cell is a nonbursting cell as well! can be converted to burst
ing cells by weak gap-junctional coupling. The emerge
phenomenon exists only for a small range of coupli
strengths, but can be enhanced either by the addition of n
@12# or by the addition of heterogeneity in the cell param
eters@13#.

In this paper, the investigation of the second type of em
gent bursting is continued with the examination of a tw
dimensional map, recently introduced by Rulkov@14#, that
produces chaotic bursting patterns similar to those obse
in neurons and endocrine cells. The map is a caricature o
Hindmarsh-Rose model of a biological neuron@15#. Rulkov
used the map to demonstrate and explain the onset of reg
bursts in a group of irregularly bursting neurons with diffe
ent individual properties when they are coupled to each o
through the mean field. Here, we extend Rulkov’s analy
with a careful bifurcation study, and show that the coup
map can also support emergent bursting from nonburs
cells. In contrast to the findings with previously studied co
tinuous systems, coupling alone is sufficient, the pheno
enon is robust for a large range of coupling strengths,
heterogeneity does not play a key role.

In Sec. II, the map representing a single cell is introduc
and the dynamics of the single cell are explained via a o
dimensional geometric bifurcation analysis. To understa
the mechanism responsible for emergent bursting from n
bursting cells, it helps to first examine the effect of me
field coupling on a pair of bursting cells, which we do in Se
III. Then, in Sec. IV, emergent bursting is demonstrated a
©2001 The American Physical Society14-1
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FIG. 1. Behavior of the single-cell model~1!,
~2!. ~a! and ~b! a54.15; ~c! and ~d! a54.4; ~e!
and ~f! a54.7. Other parameter values areh
50.0001 ands521.
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explained, and the role of heterogeneity in model parame
is examined in Sec. V. Finally, we compare the mechanis
underlying emergent bursting in previously studied contin
ous systems and this map in Sec. VI.

II. THE SINGLE-CELL MODEL

The behavior of a single cell is described by the followi
two-dimensional map@14#:

xn115
a

11xn
2

1yn , ~1!

yn115yn2h~xn2s!, ~2!

wherea, h, ands are parameters. Botha ands areO(1),
and 0,h!1. A few typical wave forms for Eqs.~1!, ~2! are
shown in Fig. 1. Following the terminology used for bursti
solutions obtained from continuous systems@9#, we will refer
to the wave forms shown in Figs 1~a! and 1~c! as square-
wave bursting, and to the wave form shown in Fig. 1~e! as
spiking. Other wave forms, such as tapered bursting@16,17#,
are possible for other values ofa, but we will not discuss
those here.

The solution behavior of Eqs.~1!, ~2! can be explained by
means of a geometric bifurcation analysis. Since 0,h!1,
the time course ofyn is much slower than that ofxn . Thus,
we can study the dynamics of the fast subsystem~1! by treat-
ing yn as a parameter, viz.,

xn115R~xn!5
a

11xn
2

1g. ~3!
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This approach was pioneered by Rinzel@8# in a study of
continuous bursting systems, and was also employed
Rulkov @14# in his analysis of Eqs.~1!, ~2!, although the
dynamics of Eq.~3! are not summarized in a bifurcatio
diagram in@14#.

For each value of the parameterg, one can determine the
fixed points of the map~3! and their stability. The curve o
fixed points, given byR(xn)5xn , traces out an S shape i
the (g,xn) plane, as shown in Fig. 2~a!. Saddle-node bifur-
cations~denoted by open circles! occur at the knees of this
curve. The right saddle node is of particular importance, a
we will refer to the value ofg at which this bifurcation
occurs asgSN. Fixed points on the bottom branch are alwa
stable, and fixed points on the middle branch are alw
unstable. The stability of the fixed points on the upper bran
changes at period-doubling bifurcations~denoted by filled
squares!. For values ofg near the period-doubling bifurca
tions, stable two-cycles are observed. The two-cycles
come four-cycles, eight-cycles, etc., in a fashion similar
the well-known logistic map@18#, and eventually the peri-
odic attractors give way to chaotic attractors. Periodic w
dows can be observed for small intervals of the bifurcat
parameter g. The thick solid C-shaped and backwa
C-shaped curves indicate the theoretical maximum and m
mum iterates~not necessarily realized!, given by

xn5R~0!5a1g, ~4!

xn5R„R~0!…5
a

11~a1g!2
1g, ~5!

respectively. External crisis bifurcations~denoted by filled
circles! occur when the minimum iterate maps onto an u
4-2
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BURSTING AS AN EMERGENT PHENOMENON IN . . . PHYSICAL REVIEW E64 051914
FIG. 2. ~a! Bifurcation diagram for the single-
cell fast subsystem~3!, usingg as the bifurcation
parameter, witha54.15. The S-shaped curve i
the curve of fixed points~thin solid lines indicate
stable fixed points and dashed lines indicate u
stable fixed points!. Dots denote periodic and
chaotic iterates of the one-dimensional map~for
100 values ofg between the left and right period
doubling bifurcations; for each value ofg, ap-
proximately 300 iterates are shown!. Thick solid
lines representxn5R(0) and xn5R„R(0)…, the
theoretical maximum and minimum iterates, r
spectively. Open circles denote saddle-node
furcations; filled squares denote period-doubli
bifurcations; filled circles denote external cris
bifurcations.~b! As ~a!, but without the periodic
and chaotic iterates, for the values ofg of interest
for a bursting solution. Theyn nullcline xn5s is
superimposed and shown as a dotted line.~c! As
~b!, with the wave form of the full single-cell
model superimposed.
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stable fixed point on the middle branch of the curve of fix
points, that is, when the curve represented byxn5R„R(0)…
intersects the middle branch. Of particular importance is
external crisis bifurcation on the right, and we will refer
the value ofg at which this bifurcation occurs asgEC .

The key to bursting is the fact that there is a range
values of the bifurcation parameterg for which there is bi-
stability. In particular, forgEC,g,gSN, there is bistability
between stable fixed points on the bottom branch of th
curve, corresponding to the silent phase of bursting, and
riodic and/or chaotic attractors between the curvesxn
5R(0) andxn5R„R(0)…, corresponding to the active phas
of bursting. This region is shown in more detail in Fig. 2~b!.
If we now include the dynamics ofyn , the mechanism un
derlying bursting becomes clear. Note from Eq.~2! that yn
does not change whenxn5s @dotted line in Fig. 2~b!#, and
that yn increases~decreases! when xn,s (xn.s). In Fig.
2~c!, the wave form shown in Figs. 1~a! and 1~b!, obtained
from the full single-cell model, is projected onto the bifurc
tion diagram of the fast subsystem. During the silent pha
iterates of the map are at or near the stable fixed points
the bottom branch of the S curve, and below the linexn
5s. Thus,yn is slowly increasing. The switch to the activ
phase is made whenyn moves to the right of the right saddle
node bifurcation, that is, whenyn.gSN. During the active
phase, iterates lie above the linexn5s on average, and soyn
is slowly decreasing here. The switch back to the silent ph
is made whenyn'gEC . The accuracy with which the dy
namics of the full two-dimensional map can be predicted
the bifurcation diagram for the one-dimensional fast s
system depends on the magnitude of the parameterh in Eq.
~2!. The smallerh, the slower the dynamics ofyn , and the
05191
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better the prediction. Due to the fact that the attractor s
rounding the unstable fixed point is chaotic nearg5gEC ,
the actual transition from the active to the silent phase can
delayed. Small delays in the return to the silent phase
visible in Fig. 2~c!.

Varying the value ofa affects the bifurcation diagram fo
Eq. ~3!. Of particular importance are the positions of th
bifurcation points relative to each other. This information
summarized in the two-parameter bifurcation diagram sho
in Fig. 3. By traversing the thin dotted horizontal line ata
54.15 from left to right, the six bifurcation points shown
Fig. 2~a! are encountered in order. It can be seen that
creasinga from 4.15 causes the distance betweengEC and
gSN to be increased. That is, the region of bistability is e
larged, resulting in longer active and silent phases. The
delay in the switch from the active to the silent phase affe
the duration of the silent and active phases only in a mi
way, and so the bursting is nearly periodic. Whena54, the
external crisis points coalesce and disappear. At this po
the two branches ofxn5R„R(0)… join, and square-wave
bursting gives way to tapered bursting@16,19#. On the other
hand, increasinga from 4.15 causes the region of bistabilit
to be diminished, resulting in shorter active and silent pha
@compare Figs. 1~a! and 1~c!#. Then, a delay in the switch
from the active phase to the silent phase due to the cha
nature of the attractor neargEC is particularly noticeable, and
the bursting is no longer nearly periodic. Whena58A3/3,
gEC coincides withgSN. At this point, there is no longer an
bistability. Depending on the parameter values of Eq.~2!, a
bursting wave form can be obtained, but in general the tw
dimensional map produces either a wave form with f
4-3
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GERDA de VRIES PHYSICAL REVIEW E 64 051914
spikes or a constant wave form. Whena.8A3/3, the exter-
nal crisis becomes an internal crisis. That is, both the fi
points on the bottom and middle branches of the S curve
located within the chaotic attractor. In these cases, w
forms of the two-dimensional map are predominantly f
spiking wave forms@as shown in Fig. 1~e!#.

III. EFFECT OF COUPLING ON IDENTICAL BURSTERS

We now consider the effect of coupling on the soluti
behavior of the two-dimensional map~1!, ~2!. Following
Rulkov @14#, we take the coupling through the mean fie
That is, we study

xn11,i5
a i

11xn,i
2

1yn,i1
«

N (
j 51

N

xn, j , ~6!

yn11,i5yn,i2h~xn,i2s i !, ~7!

where the additional subscripti indicates thei th cell,N is the
total number of cells, and« is the strength of the coupling. In
this section, we concentrate on the caseN52. However, the
results carry over to the caseN.2.

Figure 4 shows the solution behavior of two identic
cells (a15a2 ands15s2), namely, those of Fig. 1~a!, with
«50.2. The wave form forx2 is similar to the one shown fo
x1, and bursts are synchronized~the spikes within each ac
tive phase in general are not synchronized, unless both
start with the same initial conditions!. Note that the active
and silent phases are considerably longer when the cells

FIG. 3. Two-parameter bifurcation diagram for the single-c
fast subsystem~3!. The thin solid line represents the curve
saddle-node bifurcations, given bya522@(g219)g6(g2

23)3/2#/27 @14#; the thick dashed line represents the curve
period-doubling bifurcations, given parametrically bya5(x4

12x211)/(2x) and g5(x221)/(2x); the thick solid line repre-
sents the curve of external/internal crisis bifurcations, given bya
52(3g6Ag228)/2 @14#. The filled square ata58A3/3 indicates
the tangential intersection of the right saddle-node and externa
sis curves. The bullet ata54 indicates the coalescence and disa
pearance of the two external crisis points asa is decreased. The
thin dotted horizontal line given bya54.15 corresponds to the
situation analyzed in Fig. 2.
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coupled. Of less significance, but still very noticeable, is
observation that the amplitude of the burst oscillation h
increased.

These observations can easily be explained by means
bifurcation analysis of the fast subsystem of Eqs.~6!, ~7!.
Sinceyn,1'yn,2 ~not shown!, we are justified in studying the
fast subsystem with asinglebifurcation parameterg, that is,

xn11,15
a

11xn,1
2

1g1
«

2
~xn,11xn,2!, ~8!

xn11,25
a

11xn,2
2

1g1
«

2
~xn,11xn,2!, ~9!

wherea5a15a2. The resulting bifurcation diagram forx1
is shown in Fig. 5~a! @due to the symmetry in Eqs.~8!, ~9!,
the diagram forx2 is identical#. Fixed points are symmetri
cal, that is,x1[x2, and the curve of fixed points is given b
R«(xn)5xn , where

R«~xn!5
a

11xn
2

1g1«xn . ~10!

On the upper branch of steady states, pairs of peri
doubling bifurcations are observed where there were sin
period-doubling bifurcations before. The two middle perio
doubling bifurcations give rise to unstable symmetric
n-cycles and chaotic attractors, whereas the outer per
doubling bifurcations give rise to stable nonsymmetric
n-cycles and chaotic attractors. The roughly C-shaped
backward C-shaped curves emanating from the per
doubling points represent the envelopes containing the p
odic or chaotic iterates of the map, based on the computa
of several thousand iterates at selected values of the bifu
tion parameterg ~the envelopes have been smoothed som
what for clarity!. Each of the envelopes terminates at
external crisis bifurcation. Which external crisis point mo
accurately predicts the return back to the silent phase for
full four-dimensional map~6!, ~7! depends on the initial con
ditions for the two cells. If the two cells are given identic
initial conditions, the external crisis point associated with t
symmetrical envelope most accurately predicts the ret

l

f

ri-
-

FIG. 4. Wave form of the two-cell model~6!, ~7!, with a1

5a254.15 and«50.2. Other parameter values areh50.0001 and
s15s2521.
4-4
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FIG. 5. ~a! Bifurcation diagram for the two-
cell fast subsystem~8!, ~9!, usingg as the bifur-
cation parameter, witha54.15 and«50.2. The
C-shaped and backward C-shaped curves ema
ing from the period-doubling points represent th
envelopes containing the stable~solid! and un-
stable~dashed! periodic or chaotic iterates of the
map after some initial transient.~b! Portion of the
bifurcation diagram from~a!, with a wave form
of the full two-cell model~6!, ~7! superimposed.
The two cells were given identical initial condi
tions. ~c! As ~b!, but now with a wave form of
two cells that were started from different initia
conditions.
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back to the silent phase, as shown in Fig. 5~b!. However, if
the two cells are given nonidentical initial conditions, t
external crisis point associated with the nonsymmetrical
velope, emanating from the rightmost period-doubling po
is more accurate, as shown in Fig. 5~c!.

We are now in a position to explain the effect of coupli
on the length of the silent and active phases and the am
tude of the wave form observed in Fig. 4. Effectively, bo
characteristics are determined by the magnitude ofgSN
2gEC , where in the case of coupled cells we takegEC to be
the value ofg at which the nonsymmetrical envelope term
nates at an external crisis bifurcation, andgSN is as defined
in the case of a single cell. When the cells are not coup
gSN is only slightly larger thangEC , resulting in relatively
short silent and active phases. BothgEC andgSN are affected
by the coupling, but the net effect is thatgSN2gEC in-
creases, thus lengthening both the active and silent phase
observed. The reason for the increase in the amplitude o
wave form follows. The moreg or yn,1 decreases during th
active phase, the smallerxn,1 upon return to the silent phase
resulting in a larger amplitude of the burst oscillation, also
observed.

The effect of the coupling strength on the locations of
pertinent bifurcation points from Fig. 5~a! is summarized in
Fig. 6. As the coupling strength« increases, bothgEC , rep-
resented by the rightmost thick solid curve, andgSN, repre-
sented by the rightmost thin solid line, increase. SincegSN
increases faster, the region of bistability in the bifurcati
diagram is enlarged as the coupling strength increases
lowing for longer silent and active phases and, conseque
more regular bursting, as already noted in@14#. However,
only Eq. ~10! was studied in@14# to explain the effect of
05191
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coupling and, consequently, the existence of the envel
representing stable nonsymmetricaln-cycles and chaotic at
tractors was missed. Effectively, in@14#, gEC was taken to be
the value ofg at which the envelope representing unsta
symmetricaln-cycles and chaotic attractors terminates at
external crisis bifurcation. The symmetricalgEC is repre-
sented by the second-most-right thick solid curve~it joins up
with the second-most-left thick solid curve as« increases! in

FIG. 6. Effect of the coupling strength« on the relative loca-
tions of bifurcation points from the right half of the diagram in Fi
5~a!. Thick solid lines represent the symmetric~left! and nonsym-
metric ~right! external crisis bifurcations. The thin solid line repr
sents the saddle-node bifurcation. Thick dashed lines represen
symmetric~left! and nonsymmetric~right! period-doubling bifurca-
tions. Shading highlights the region of bistability for values ofg
betweengEC andgSN.
4-5
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FIG. 7. Emergent bursting from coupled non
bursting cells. ~a! Spiking wave form of the
single-cell model~1!, ~2! with a58A3/3 ands
520.85. ~b! Relevant portion of the bifurcation
diagram of the corresponding single-cell fast su
system~3!, with the solution from~a! superim-
posed. The filled diamond indicates the simult
neous saddle-node and external cris
bifurcations. The horizonal dotted line indicate
the yn nullcline, xn5s. ~c! Bursting wave form
of the corresponding full two-cell model~6!, ~7!
with «50.2.
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Fig. 6. Thus, the role of coupling in enlarging the size of t
region of bistability was exaggerated in@14#. In either case,
coupling results in more regular bursting, and this is
mechanism underlying regularization, as explained in@14#.
Note that in @14# a heterogenous population of cells w
used. The role of heterogeneity will be examined below
Sec. V.

As alluded to above, an interesting feature of Fig. 6 is t
as« increases the two symmetrical external crisis bifurcat
points approach each other. When«'0.35, they coalesce
and annihilate each other in a codimension-2 bifurcati
Thus, for«.0.35, cells started off with identical initial con
ditions would exhibit tapered bursting, whereas the sa
cells started off with nonidentical initial conditions wou
exhibit square-wave bursting.

Of interest for the phenomenon of emergent bursting,
amined below, is that the enlargement of the region of bis
bility occurs for a large range of coupling strengths«. This is
in contrast to the effect of~gap-junctional! coupling on pre-
viously studied continuous systems@2,11–13#. We will
elaborate on this issue in the discussion in Sec. VI.

IV. BURSTING AS AN EMERGENT PHENOMENON

From the previous section, it is clear that the effect
coupling is to enlarge the region of bistability relevant f
bursting behavior. In this section, we push this idea furth
coupling also canintroduce bistability to cells that do not
exhibit any bistability on their own. Thus, coupling can tu
spiking cells into bursting cells.

To remove the bistability in the single-cell fast subsyste
we seta58A3/3 so thatgEC5gSN. That is, the envelope
representing the minimum periodic or chaotic iterate in
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bifurcation diagram of the single-cell fast subsystem,xn

5R„R(0)…, intersects the curve of fixed points at the sad
node on the right, as shown in Fig. 7~b! ~also see Fig. 3; this
value ofa represents the transition from external to intern
crisis bifurcations and vice versa!.

For this value ofa, burstlike wave forms of the full
single-cell model can be observed for certain choices of
slow subsystem; however, the bursting occurs on a fast t
scale, and is very irregular due to the chaotic nature of
attractor for values ofg just larger thangSN. We will avoid
such chaotic burstlike wave forms by changing the value
s slightly, from s521 to s520.85, to obtain a spiking
wave form, as shown in Fig. 7~a!. The wave form is super-
imposed onto the bifurcation diagram of the single-cell f
subsystem in Fig. 7~b!. Note that the iterates remain in th
vicinity of g5yn'22.87. This value depends on the pos
tion of the slow nullclinexn5s: the further the nullcline is
moved upward, the further to the right the wave form w
lie. The reason for this is as follows. Recall that when
iterate (xn ,yn) of the full single-cell model falls below this
nullcline, yn11.yn ; when it falls above the nullcline,yn11
,yn . The long-term behavior of the full single-cell mod
depends on the location of the average iterate relative to
nullcline. For values ofg neargSN, the average iterate lie
below the nullcline, that is, on average, iterates will move
the right in Fig. 7~b!. For values ofg@gSN, the average
iterate lies above the nullcline, that is, on average, itera
will move to the left. A balance is struck somewhere in t
middle.

We now couple two such spiking cells, with«50.2. The
resulting bursting wave form is shown in Fig. 7~c!. The rea-
son for this new collective behavior is precisely the same
that explains the lengthening of the silent and active pha
4-6
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FIG. 8. Effect of heterogeneity on the size of the region of bistability in the bifurcation diagram of the fast subsystem~15!, ~16!,
measured bygSN2gEC . ~a! Effect of heterogeneity in the slow subsystem. Parameter values area15a258A3/3 and«50.2. ~b! Effect of

heterogeneity in the fast subsystem. Parameter values area15â1Da , a25â2Da , â54.3, and«50.2. Filled squares indicate the value
of d andDa sampled.
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discussed in the previous section. Upon coupling, both
saddle-node and external crisis bifurcations move to
right, but the saddle-node bifurcation is affected more th
the external crisis bifurcation so thatgEC,gSN, and thus a
region of bistability is introduced. The phenomenon of em
gent bursting is very robust to a change in the coupl
strength. The stronger the coupling, the larger the region
bistability, similar to the enlargement of the region of bis
bility shown in Fig. 6.

The single-cell fast subsystem lacks bistability only wh
a58A3/3. So it is natural to ask whether the emergence
more or less regular bursting persists for values ofa
.8A3/3. Indeed, it does. For these values ofa, the relevant
branch of periodics/chaotics for the single-cell fast su
system terminates at an internal crisis bifurcation, and w
forms for the full system are predominantly fast spiking@see
Fig. 1~e!#. When coupled weakly, the relevant branch
periodics/chaotics, namely, the stable nonsymmetric bra
also terminates at an internal crisis bifurcation. However
coupling increases, the internal crisis bifurcation moves
ward the saddle node and then becomes an external c
bifurcation, at which point emergent bursting can be se
The largera, the larger the perturbation needs to be to obt
the emergent phenomenon.

V. ROLE OF HETEROGENEITY

The emergence of bursting from nonbursting cells in p
viously studied continuous systems depends critically on
erogeneity in the model parameters@13#. This is the motiva-
tion to investigate the role of heterogeneity in the mo
parameters of the discrete map in promoting emergent bu
ing and, by extension, regularization@14#. We distinguish
between heterogeneity in the slow and fast subsystems
first discuss the general effect of heterogeneity and the m
fications required in the computation of a bifurcation d
gram.

It can be readily verified by numerical simulation thaty1
and y2 are no longer approximately equal whena1Þa2
and/ors1Þs2. Thus, it no longer suffices to useg as the
single bifurcation parameter in the corresponding fast s
system, as was done in Eqs.~8!, ~9!. Two bifurcation param-
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eters are now required to fully characterize the fast s
system. However,y22y1 is approximately constant. Thus,
we let

d5~y12y2!/2, ~11!

y5~y11y2!/2, ~12!

so that

y15y1d, ~13!

y25y2d, ~14!

then we can lety5g be the primary bifurcation paramete
as before, andd be the secondary bifurcation parameter@20#.
The resulting fast subsystem is

xn11,15
a1

11xn,1
2

1g1 d̄1
«

2
~xn,11xn,2!, ~15!

xn11,25
a2

11xn,2
2

1g2 d̄1
«

2
~xn,11xn,2!, ~16!

whered̄ is the average value ofd, based on many iteration
of the full two-cell system.

Although we will not do so here, the procedure to confir
the accuracy of the fast subsystem bifurcation diagram
predicting the full two-cell system behavior would be as fo
lows. First, the full two-cell system is simulated so thatd̄ can
be calculateda priori. This value ofd̄ is then used in Eqs
~15! and~16! to produce a bifurcation diagram withg as the
bifurcation parameter. Subsequently, ana posterioricheck of
the accuracy of the bifurcation diagram can be made by p
jecting the wave forms of the full system onto the bifurcati
diagrams, shifted appropriately via Eqs.~13! and ~14!. Pro-
vided extreme heterogeneity is avoided, the bifurcation d
gram thus obtained indeed can be seen to be a good pred
of the full system behavior.

Heterogeneity in the slow subsystem is achieved by
ting s1Þs2 in Eqs.~6! and ~7!. Recall that emergent burst
4-7
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ing was shown in the previous section witha15a2

58A3/3 ands15s2520.85. Keeping the values ofa1,2
fixed, emergent bursting can be obtained for many choice
s1 and s2. The more disparates1 and s2, the larger the
resulting value ofd̄. Thus, in this situation,d̄ can be viewed
as a measure of heterogeneity in the slow subsystem. Fi
8~a! summarizes the effect of increased heterogeneity in
slow subsystem on the size of the region of bistability in
fast subsystem bifurcation diagram, measured bygSN

2gEC . As d̄ increases, the size of the region of bistabil
decreases~this is in accordance with the shorter bursts o
served in wave forms obtained for the full two-cell system!.
Although heterogeneity does not significantly affect the s
of the region of bistability, it is clear that heterogeneity do
not promote emergent bursting, nor bursting in general
contrast to the findings of de Vries and Sherman@13# for
continuous systems.

Heterogeneity in the fast subsystem is achieved by let
a1Þa2 in Eqs.~6! and~7!. The effect of this type of hetero
geneity can no longer be isolated in one parameter in the
subsystem~for each choice ofa1 anda2, a new value ofd̄
must be calculated!. To facilitate a systematic compariso
we let

a15â1Da , ~17!

a25â2Da , ~18!

and varyDa while keepingâ constant. Figure 8~b! summa-
rizes the effect of increased heterogeneity (Da) in the fast
subsystem on the size of the region of bistability. As befo
as Da increases, the size of the region of bistability d
creases. Thus, heterogeneity in the fast subsystem also
not promote bursting; in fact, it slightly hinders it.

VI. DISCUSSION

In this paper, we have continued the study of the sim
two-dimensional map exhibiting bursting introduced
Rulkov @14#. Rulkov studied the map in the context of reg
larization of synchronized chaotic bursts. Although the
sults obtained here clarify some details of regularization,
main focus of this paper is to examine the bursting t
emerges in a population of nonbursting cells when they
coupled through the mean field and to compare this phen
enon to a similar situation in continuous systems.

The analysis of Rulkov@14# revealed that the mechanis
of bursting in the map is analogous to the mechanism o
certain type of bursting exhibited in many models of diffe
ential equations, namely, so-called square-wave bursting@9#.
For continuous square-wave bursters, it is well known tha
change in parameters can destroy the bursting behavior.
eral recent papers have examined diffusively coupled
works of such nonbursting cells, and it has been shown
bursting can be recovered, albeit under certain conditi
~see the Introduction for a brief review!. The analogy be-
tween the mechanism underlying bursting in the map
continuous square-wave bursting provided the impetus
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study emergent bursting in the map.
We began by carefully constructing a bifurcation diagra

of the fast subsystem of a single bursting cell, thereby
tending Rulkov’s analysis of the map. Bursting in a sing
cell crucially depends on two model ingredients, name
bistability between a stable fixed point and a periodic
chaotic attractor in the fast subsystem of the cell, and a s
process that can switch the system between these state

By changing the model parameters, the bistability in t
fast subsystem can be removed in a fashion similar to w
has been done previously for continuous square-wave bu
ers @2,11–13#. When the resulting nonbursting cells we
coupled through the mean field, bursting was recovered.
mechanism underlying emergent bursting was revealed b
bifurcation analysis of the coupled fast subsystem. In g
eral, a two-parameter bifurcation analysis is required to st
a coupled system. However, ideas from the study of conti
ous systems carried over, and it was shown that a o
parameter bifurcation analysis suffices to explain the em
gent bursting phenomenon. In particular, it was found t
coupling serves to perturb the system so as to reintrodu
region of bistability. The emergent bursting phenomenon
very robust: the stronger the coupling, the larger the size
the region of bistability, the longer the active and sile
phases, and the more regular the bursts. This is in con
with previously studied continuous models@2,11–13#, where
emergent bursting due to coupling alone is delicate, and
ists only over a small range of coupling strengths. In tho
models, heterogeneity in the model parameters is able to
cue emergent bursting over a significant range of coup
strengths. In contrast, heterogeneity for the model stud
here does not promote emergent bursting; in fact, it sligh
hinders it.

Even though this paper focused on the phenomenon
emergent bursting, results were obtained that are relevan
the phenomenon of regularization of synchronized cha
bursts@14#. In particular, the stable nonsymmetrical bran
of periodics/chaotics in the bifurcation diagram of the fa
subsystem of a pair of cells is shown here. Furthermore,
finding that the introduction of heterogeneity in the mod
parameters slightly decreases the size of the region of b
bility implies that regularization is due to coupling alone.

The mechanism responsible for generating the emerg
bursting shown here depends critically on the fact that
nonbursting cells were derived from bursting cells by plac
them in a parameter regime not too far removed from
parameter regime where the cells exhibit bursting. As a
sult, the bifurcation structures of the fast subsystem
bursting and nonbursting cells are related, so that mod
changes in just a few model parameters can turn a nonb
ing cell into a bursting cell and vice versa. Thus, it is n
surprising that a small perturbation such as that obtai
from coupling between cells produces bursting from no
bursting cells. However, although the mechanism underly
emergent bursting appears similar in previously studied c
tinuous systems and the discrete map examined here, t
are some important differences. In particular, the manne
which emergent bursting does or does not persist as the
pling strength increases appears to be nongeneric, and s
4-8
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to depend on the type of equations and the type of coup
used. For example, applying diffusive coupling to the d
crete bursting model does not generate emergent burs
nor does applying mean field coupling to the continuo
bursting model. In addition, whether or not heterogene
plays a crucial role in the emergence of bursting seem
depend on the system.

Recent studies of the generation of simple oscillations
networks of electrically coupled nonoscillating cells ha
brought out a similar finding, namely, that heterogeneity
the model parameters may or may not be important, and
the emergent phenomenon may or may not persist as
coupling strength is increased, depending on the dynamic
the individual cells. For example, Cartwright@4# and Manor
et al. @3# have proposed mechanisms that critically depe
on heterogeneity in the cell parameters, whereas the me
nisms proposed by Sherman and Rinzel@2# and Loewenstein
et al. @1# do not require heterogeneity. Furthermore, t
emergent oscillations in@2# exist only for a restricted rang
of coupling, whereas they persist for arbitrarily large co
pling strength in@1#. Whether the details of the variou
tl.

iol

th

-
.
1
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mechanisms underlying emergent oscillations and burs
can be unified by some general principles remains an o
question.

The similarities and differences observed in the behav
of discrete and continuous bursting models raise some in
esting questions. For example, what type of biophysical s
tem is captured by the discrete system? Is there a direct
nection between discrete and continuous bursting syste
and, if so, how can discrete maps be generated from
physically based continuous models? The relevance of
discrete model to real biophysical systems remains to
seen. However, studying emergent bursting in a variety
systems advances our qualitative understanding of netw
behavior and may lead to further insight into how individu
cells can function as a unit when coupled together.
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