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Bursting as an emergent phenomenon in coupled chaotic maps
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A two-dimensional map exhibiting chaotic bursting behavior similar to the bursting electrical activity ob-
served in biological neurons and endocrine cells is examined. Model parameters are changed so that the
bursting behavior is destroyed. We show that bursting can be recovered in a population of such nonbursting
cells when they are coupled via the mean field. The phenomenon is explained with a geometric bifurcation
analysis. The analysis reveals that emergent bursting in the network is due to coupling alone and is very robust
to changes in the coupling strength, and that heterogeneity in the model parameters does not play a role.
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I. INTRODUCTION rameters can turn a bursting cell into a nonbursting cell, and
vice versa. Implications of the phenomenon have been dis-
In the context of this paper, an emergent phenomenon is gussed in the context of electrical activity of pancregic

phenomenon observed in a population of cells that cannot beells; however, they are equally applicable to comparable
predicted readily from the properties of its individual con- SyStéms. Two types of emergent bursting must be distin-

stituents. Emergent phenomena, such as the generation @fished. First, Smoleet al.[10] proposed the heterogeneity
oscillations from nonoscillatory cells via gap-junctional cou- "YPOthesis, in which cell parameters are randomly distrib-
pling [1—4], have been of interest for some time in neurobio-Ut€d SO that only a few cells can burst. When coupled diffu-
logical and endocrine systems. Neurons and endocrine cel vely, the population as a whole takes on the properties of

rarely act alone, but rather as members of a population co ne average cell, provided the coupling strength is suffi-
P . . ! . nC|ently strong. As long as the average cell bursts, the popu-
nected together via ga_p-junctlonal or synaptic .Cou,pl'ng'lation bursts. A similar concept was put forward by Cart-
Thus, the electrical activity observed in the population is th%right [4] and by Manoretal. [3] in their studies of
result of the properties of individual cells as well as of the gmergent oscillations from silent cells by gap-junctional cou-
nature of the coupling. _ _ pling. Second, Sherman and RinZ€] and Shermarj11]
In this paper, we are interested in emergent bursting fronjemonstrated that identical nonbursting cédis the average
nonbursting cells. Bursting is a complex oscillation of thecell is a nonbursting cell as weltan be converted to burst-
membrane potential of cells, characterized by a periodic aling cells by weak gap-junctional coupling. The emergent
ternation between active and silent phases. During the silepfhenomenon exists only for a small range of coupling
phase, the membrane potential is at a quasisteady statstrengths, but can be enhanced either by the addition of noise
whereas during the active phase it undergoes rapid oscilld412] or by the addition of heterogeneity in the cell param-
tions. Bursting oscillations are commonly seen to be the prieters[13].
mary mode of behavior in a wide variety of neurons and |In this paper, the investigation of the second type of emer-
endocrine cells, such as pancreggicells[5], hippocampal gent bursting is continued with the examination of a two-
pyramidal neuron$6], and thalamic neuron¥]. dimensional map, recently introduced by Rulkid4], that
Most models describing bursting in single cells consist ofproduces chaotic bursting patterns similar to those observed
a system of nonlinear ordinary differential equations, and thén neurons and endocrine cells. The map is a caricature of the
dynamics of these systems are well understood. Followingdindmarsh-Rose model of a biological neurdd®]. Rulkov
the analysis of Rinze[8,9], bursting activity is typically used the map to demonstrate and explain the onset of regular
viewed as being the result of the interaction of a fast and &ursts in a group of irregularly bursting neurons with differ-
slow subsystem. The fast subsystem can exhibit rapid oscikent individual properties when they are coupled to each other
lations (active phaseand stable steady statésilent phase  through the mean field. Here, we extend Rulkov’s analysis
The slow subsystem is responsible for switching the dynamwith a careful bifurcation study, and show that the coupled
ics of the fast subsystem between these two states in a perhap can also support emergent bursting from nonbursting
odic fashion. cells. In contrast to the findings with previously studied con-
There are now several theoretical papers in which bursttinuous systems, coupling alone is sufficient, the phenom-
ing as an emergent phenomenon, resulting from gapenon is robust for a large range of coupling strengths, and
junctional coupling of nonbursting cells, has been demonheterogeneity does not play a key role.
strated. The nonbursting cells are related to the bursting cells In Sec. II, the map representing a single cell is introduced,
in the sense that the parameter regimes in which each typgnd the dynamics of the single cell are explained via a one-
exists are relatively close. Thus, changes in a few key padimensional geometric bifurcation analysis. To understand
the mechanism responsible for emergent bursting from non-

bursting cells, it helps to first examine the effect of mean

*Email address: devries@math.ualberta.ca field coupling on a pair of bursting cells, which we do in Sec.
URL: http://www.math.ualberta.cabevries Ill. Then, in Sec. IV, emergent bursting is demonstrated and
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FIG. 1. Behavior of the single-cell modél),
(2). (@) and(b) @=4.15;(c) and(d) a=4.4; (e)
and (f) «=4.7. Other parameter values arge
=0.0001 ando=—1.
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explained, and the role of heterogeneity in model parameterhis approach was pioneered by RinZ8] in a study of

is examined in Sec. V. Finally, we compare the mechanismsontinuous bursting systems, and was also employed by
underlying emergent bursting in previously studied continu-Rulkov [14] in his analysis of Eqgs(1), (2), although the

ous systems and this map in Sec. VI. dynamics of Eq.(3) are not summarized in a bifurcation
diagram in[14].
Il. THE SINGLE-CELL MODEL For each value of the parametgrone can determine the

fixed points of the mag3) and their stability. The curve of
The behavior of a single cell is described by the followingfixed points, given byR(x,)=X,, traces out an S shape in
two-dimensional map14]: the (y,x,) plane, as shown in Fig.(8. Saddle-node bifur-
cations(denoted by open circle®ccur at the knees of this
a curve. The right saddle node is of particular importance, and
Xn+l:ﬁ+ynv (1) we will refer to the value ofy at which this bifurcation
n occurs asygy- Fixed points on the bottom branch are always
stable, and fixed points on the middle branch are always
Yn+1=Yn— 7(Xy—0), 2 unstable. The stability of the fixed points on the upper branch
changes at period-doubling bifurcatiofdenoted by filled
wherea, 7, ando are parameters. Bot ando areO(1),  squares For values ofy near the period-doubling bifurca-
and 0<7n<1. A few typical wave forms for Eqg1), (2) are  tions, stable two-cycles are observed. The two-cycles be-
shown in Fig. 1. Following the terminology used for bursting come four-cycles, eight-cycles, etc., in a fashion similar to
solutions obtained from continuous syste@k we will refer  the well-known logistic mag18], and eventually the peri-
to the wave forms shown in Figsd and Xc) as square- odic attractors give way to chaotic attractors. Periodic win-
wave bursting, and to the wave form shown in Fige)las  dows can be observed for small intervals of the bifurcation
spiking. Other wave forms, such as tapered burti®y17,  parametery. The thick solid C-shaped and backward
are possible for other values of, but we will not discuss C-shaped curves indicate the theoretical maximum and mini-

those here. mum iterategnot necessarily realizédgiven by
The solution behavior of Eq$l), (2) can be explained by
means of a geometric bifurcation analysis. Sineef<1, X,=R(0)=a+v, (4)

the time course of,, is much slower than that of,. Thus,
we can study the dynamics of the fast subsysténby treat-

ing y, as a parameter, viz., Xp=R(R(0))= ———+1, (5)
1+(a+ 'y)z
o
Xn+1= R(Xp) = —— + 7. (3)  respectively. External crisis bifurcatioridenoted by filled
1+x, circles occur when the minimum iterate maps onto an un-
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3 S FIG. 2. (a) Bifurcation diagram for the single-
5 [ D cell fast subsyster(B), usingy as the bifurcation
| ,+/_ parameter, withw=4.15. The S-shaped curve is
x, 1l - the curve of fixed point¢thin solid lines indicate
- . stable fixed points and dashed lines indicate un-
0 B ] stable fixed points Dots denote periodic and
1 _ chaotic iterates of the one-dimensional n&gr
5 - 100 values ofy between the left and right period-
2 — doubling bifurcations; for each value of, ap-
i L] proximately 300 iterates are showihick solid
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lines represenk,=R(0) and x,=R(R(0)), the
theoretical maximum and minimum iterates, re-
i spectively. Open circles denote saddle-node bi-
furcations; filled squares denote period-doubling
bifurcations; filled circles denote external crisis
bifurcations.(b) As (a), but without the periodic
and chaotic iterates, for the valuesybf interest
for a bursting solution. Thg, nullcline x,= o is
superimposed and shown as a dotted liigg As
(b), with the wave form of the full single-cell

= 4 F - model superimposed.
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stable fixed point on the middle branch of the curve of fixedbetter the prediction. Due to the fact that the attractor sur-
points, that is, when the curve representedxpy R(R(0))  rounding the unstable fixed point is chaotic neaf yec,
intersects the middle branch. Of particular importance is thehe actual transition from the active to the silent phase can be
external crisis bifurcation on the right, and we will refer to delayed. Small delays in the return to the silent phase are
the value ofy at which this bifurcation occurs ag. visible in Fig. Zc).

The key to bursting is the fact that there is a range of varying the value ofx affects the bifurcation diagram for
values of the bifurcation parametgrfor which there is bi-  Eq. (3). Of particular importance are the positions of the
stability. In particular, foryec<y<'ysy, there is bistability  pjfyrcation points relative to each other. This information is

between stable fixed points on the bottom branch of the §,mmarized in the two-parameter bifurcation diagram shown
curve, corresponding to the silent phase of bursting, and pgj rig 3. By traversing the thin dotted horizontal line at

riodic and/or chaotic atiractors bgtween the CUNVES 4 15 from left to right, the six bifurcation points shown in
= R(0) andx,=R(R(0)), corresponding to the active phase Fig. 2(a) are encountered in order. It can be seen that de-

of bursting. This region is shown in more detail in FigbR . p he di
If we now include the dynamics of,,, the mechanism un- creasinge from 415 causes the dlstgnce be_twa@@_ ar_ld
" vsn 10 be increased. That is, the region of bistability is en-

derlying bursting becomes clear. Note from that L . .
ying g £2) Yn larged, resulting in longer active and silent phases. Then, a

does not change when,= o [dotted line in Fig. 2o)], and ; ; : .
that y,, increasesdecreasaswhen x,<o (x,>0). In Fig. delay in the switch from the active to the silent phase affects

2(c), the wave form shown in Figs.(4) and 1b), obtained the duration of the silgnt gnd active p.ha§es only in a minor
from the full single-cell model, is projected onto the bifurca- W&, and so the bursting is nearly periodic. When 4, the
tion diagram of the fast subsystem. During the silent phasé?xternal crisis points coalesce and disappear. At this point,
iterates of the map are at or near the stable fixed points ofie two branches ok,=R(R(0)) join, and square-wave
the bottom branch of the S curve, and below the lige bursting gives way to tapered burstifis,19. On the other
=¢. Thus,y, is slowly increasing. The switch to the active hand, increasing from 4.15 causes the region of bistability
phase is made when, moves to the right of the right saddle- to be diminished, resulting in shorter active and silent phases
node bifurcation, that is, whey,> ysy. During the active [compare Figs. () and Xc)]. Then, a delay in the switch
phase, iterates lie above the ling= o on average, and sg, from the active phase to the silent phase due to the chaotic
is slowly decreasing here. The switch back to the silent phaseature of the attractor neakc is particularly noticeable, and

is made wherny,~ ygc. The accuracy with which the dy- the bursting is no longer nearly periodic. Wher-8/3/3,
namics of the full two-dimensional map can be predicted byyg coincides withygy. At this point, there is no longer any
the bifurcation diagram for the one-dimensional fast sub-bistability. Depending on the parameter values of &, a
system depends on the magnitude of the paramgiarEq.  bursting wave form can be obtained, but in general the two-
(2). The smallery, the slower the dynamics of,, and the dimensional map produces either a wave form with fast
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I I N U B FIG. 4. Wave form of the two-cell modd6), (7), with a;
-5 4 3 2 - 0 1 = a,=4.15 ande =0.2. Other parameter values age=0.0001 and
01=02= — 1 .

FIG. 3. Two-parameter bifurcation diagram for the single-cell COUPIed. Of less significance, but still very noticeable, is the
fast subsysten(3). The thin solid line represents the curve of Observation that the amplitude of the burst oscillation has
saddle-node bifurcations, given bya=—2[(y2+9)y=(y?  increased.

—3)¥2)/27 [14]; the thick dashed line represents the curve of These observations can easily be explained by means of a
period-doubling bifurcations, given parametrically by=(x*  bifurcation analysis of the fast subsystem of E(®, (7).
+2x2+1)/(2x) and y=(x?—1)/(2x); the thick solid line repre-  Sincey, 1~y , (not shown, we are justified in studying the
sents the curve of external/internal crisis bifurcations, giverwby fast subsystem with asinglebifurcation parametey, that is,
=—(3y=y?—8)/2[14]. The filled square at=8./3/3 indicates

the tangential intersection of the right saddle-node and external cri- o e

sis curves. The bullet at=4 indicates the coalescence and disap- Xnt11= 7 5 + 7+§(Xn,1+ Xn2), (8

pearance of the two external crisis points &ass decreased. The 1+Xn1
thin dotted horizontal line given by=4.15 corresponds to the
situation analyzed in Fig. 2. o €
Xp+12= 75 T 7+§(Xn,1+ Xn,2)s 9
1+xX72

spikes or a constant wave form. Whet»8/3/3, the exter-

nal crisis becomes an internal crisis. That is, both the fixe _ ; : ; :
points on the bottom and middle branches of the S curve ar‘éé/hsegg\;«vn iﬁlFigzg)—rEngstléltt'ﬂg g)l/frl:]rr%aettl?yniglaqur%T Eg)&

located within the _chaot|.c attractor. In these cases, wavg diagram forx, is identical. Fixed points are symmetri-
forms of the two-dimensional map are predominantly fast

spiking wave formgas shown in Fig. ©)]. %al(xtf;a:t )l(s,xlvTherr,eand the curve of fixed points is given by
€ n n»

Ill. EFFECT OF COUPLING ON IDENTICAL BURSTERS

o
R.(Xn) = +y+ex,. (10
1+

2

We now consider the effect of coupling on the solution 2

behavior of the two-dimensional mafl), (2). Following
Rulkov [14], we take the coupling through the mean field. on the upper branch of steady states, pairs of period-
That is, we study doubling bifurcations are observed where there were single
period-doubling bifurcations before. The two middle period-
doubling bifurcations give rise to unstable symmetrical
n-cycles and chaotic attractors, whereas the outer period-
doubling bifurcations give rise to stable nonsymmetrical
Yo+ =Yni— 7(Xni— 07, (7)  n-cycles and chaotic attractors. The roughly C-shaped and
backward C-shaped curves emanating from the period-
where the additional subscripindicates theéth cell, Nis the  doubling points represent the envelopes containing the peri-
total number of cells, and is the strength of the coupling. In odic or chaotic iterates of the map, based on the computation
this section, we concentrate on the chse2. However, the of several thousand iterates at selected values of the bifurca-
results carry over to the cade>2. tion parametery (the envelopes have been smoothed some-
Figure 4 shows the solution behavior of two identicalwhat for clarity). Each of the envelopes terminates at an
cells (@y= @, ando1=0,), namely, those of Fig.(&), with  external crisis bifurcation. Which external crisis point most
e=0.2. The wave form fok, is similar to the one shown for accurately predicts the return back to the silent phase for the
X1, and bursts are synchronizéthe spikes within each ac- full four-dimensional mag6), (7) depends on the initial con-
tive phase in general are not synchronized, unless both celtfitions for the two cells. If the two cells are given identical
start with the same initial conditionsNote that the active initial conditions, the external crisis point associated with the
and silent phases are considerably longer when the cells asymmetrical envelope most accurately predicts the return

N
' &
Xn+1i =5 T Ynit 2 Xnis 6
n+1, l+X2- yn,l szl n,j ()

n,i
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of the full two-cell model(6), (7) superimposed.
The two cells were given identical initial condi-
tions. (c) As (b), but now with a wave form of
two cells that were started from different initial
conditions.

1
o
|
%Y
!
(3]
1
o
—_

-3 -2.8 -2.6 -24 =22 3 -2.8 -2.6 -24 =22

yor yn,l yor yﬂ,l

back to the silent phase, as shown in Figh)5However, if  coupling and, consequently, the existence of the envelope
the two cells are given nonidentical initial conditions, therepresenting stable nonsymmetricatycles and chaotic at-
external crisis point associated with the nonsymmetrical entractors was missed. Effectively, ih4], yg- was taken to be
velope, emanating from the rightmost period-doubling pointthe value ofy at which the envelope representing unstable
is more accurate, as shown in Figch symmetricaln-cycles and chaotic attractors terminates at an
We are now in a position to explain the effect of coupling external crisis bifurcation. The symmetricgkc is repre-
on the length of the silent and active phases and the amplsented by the second-most-right thick solid cuitgoins up
tude of the wave form observed in Fig. 4. Effectively, bothwith the second-most-left thick solid curve asncreasekin
characteristics are determined by the magnitude ygf;
— Yec, Where in the case of coupled cells we take- to be 0.4 T T
the value ofy at which the nonsymmetrical envelope termi- i "
nates at an external crisis bifurcation, apgk is as defined n
in the case of a single cell. When the cells are not coupled. 0.3~ 1]
ysn IS only slightly larger thanygc, resulting in relatively i
short silent and active phases. Bath- andygy are affected 1
by the coupling, but the net effect is thatgy— yec in- & 02 I
creases, thus lengthening both the active and silent phases, ::
observed. The reason for the increase in the amplitude of the i
wave form follows. The morey or y, ; decreases during the 0.1 :
active phase, the smallgf, ; upon return to the silent phase, B :
resulting in a larger amplitude of the burst oscillation, also as 1
observed. 03 ”
The effect of the coupling strength on the locations of the
pertinent bifurcation points from Fig.(& is summarized in Y
Fig. 6. As the coupling strength increases, bothgc, rep-

resented by the rightmost thick solid curve, apg, repre-  tions of bifurcation points from the right half of the diagram in Fig.
sented by the rightmost thin solid line, increase. SivéR  5(5). Thick solid lines represent the symmettleft) and nonsym-
increases faster, the region of bistability in the bifurcationmetric (right) external crisis bifurcations. The thin solid line repre-
diagram is enlarged as the coupling strength increases, aents the saddle-node bifurcation. Thick dashed lines represent the
lowing for longer silent and active phases and, consequentlyymmetric(left) and nonsymmetri¢right) period-doubling bifurca-
more regular bursting, as already noted[I#]. However, tions. Shading highlights the region of bistability for valuesyof
only Eqg. (10) was studied in14] to explain the effect of betweenygc and ygy.

FIG. 6. Effect of the coupling strength on the relative loca-
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FIG. 7. Emergent bursting from coupled non-
bursting cells.(a) Spiking wave form of the
single-cell model1), (2) with «=8+3/3 ando
=—0.85. (b) Relevant portion of the bifurcation
diagram of the corresponding single-cell fast sub-
system(3), with the solution from(a) superim-
posed. The filled diamond indicates the simulta-
neous saddle-node and external crisis
bifurcations. The horizonal dotted line indicates
the y,, nullcline, x,=o. (c) Bursting wave form
of the corresponding full two-cell modéé), (7)
with e=0.2.

n yory,

n,1

Fig. 6. Thus, the role of coupling in enlarging the size of thepifurcation diagram of the single-cell fast subsystexy,
region of bistability was exaggerated [ib4]. In either case, =R(R(0)), intersects the curve of fixed points at the saddle
coupling results in more regular bursting, and this is thengde on the right, as shown in Fig(b7 (also see Fig. 3; this

mechanism underlying regularization, as explainedlid].  yajye of« represents the transition from external to internal
Note that in[14] a heterogenous population of cells was yisis bifurcations and vice versa

used. The role of heterogeneity will be examined below in  Eqr this value ofa, burstlike wave forms of the full
Sec. V. . ) ) ) single-cell model can be observed for certain choices of the
As alluded to above, an interesting feature of Fig. 6 is thajoy subsystem; however, the bursting occurs on a fast time
ase increases the two symmetrical external crisis bifurcationscgle and is very irregular due to the chaotic nature of the
points approach each other. When=0.35, they coalesce attractor for values of just larger thanysy. We will avoid
and annihilate each other in a codimension-2 bifurcationg;,ch chaotic burstlike wave forms by changing the value of
Thus, fore>0.35, cells started off with identical initial con- slightly, from o=—1 to o= —0.85, to obtain a spiking
ditions would exhibit tapered bursting, whereas the samgaye form, as shown in Fig.(®). The wave form is super-
cells started off with nonidentical initial conditions would imposed onto the bifurcation diagram of the single-cell fast
exhibit square-wave bursting. _ subsystem in Fig. (B). Note that the iterates remain in the
Of interest for the phenomenon of emergent bursting, eXyicinity of y=y,~—2.87. This value depends on the posi-
amined below, is that the enlargement of the region of bistaio of the slow nullclinex,= o the further the nullcline is
bility occurs for a large range of coupling strengthsThis is  moved upward, the further to the right the wave form will
in contrast to the effect ofgap-junctional coupling on pre- jie. The reason for this is as follows. Recall that when an
viously studied continuous systeni2,11-13. We will  jierate &, ,y,) of the full single-cell model falls below this
elaborate on this issue in the discussion in Sec. VI. nullcline, y,,. 1>V, when it falls above the nullcliney, . ;
<Y,. The long-term behavior of the full single-cell model
depends on the location of the average iterate relative to the
nullcline. For values ofy nearvygy, the average iterate lies
From the previous section, it is clear that the effect ofbelow the nullcline, that is, on average, iterates will move to
coupling is to enlarge the region of bistability relevant for the right in Fig. Tb). For values ofy> gy, the average
bursting behavior. In this section, we push this idea furtheriterate lies above the nullcline, that is, on average, iterates
coupling also carintroduce bistability to cells that do not will move to the left. A balance is struck somewhere in the
exhibit any bistability on their own. Thus, coupling can turn middle.
spiking cells into bursting cells. We now couple two such spiking cells, with=0.2. The
To remove the bistability in the single-cell fast subsystemresulting bursting wave form is shown in Figcy. The rea-
we seta=8./3/3 so thatygc=ysy. That is, the envelope son for this new collective behavior is precisely the same one
representing the minimum periodic or chaotic iterate in thethat explains the lengthening of the silent and active phases

IV. BURSTING AS AN EMERGENT PHENOMENON
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FIG. 8. Effect of heterogeneity on the size of the region of bistability in the bifurcation diagram of the fast sub&l/Ste(io),
measured byysy— vec. (@) Effect of heterogeneity in the slow subsystem. Parameter values,are,=8+/3/3 ande =0.2. (b) Effect of
heterogeneity in the fast subsystem. Parameter valueslaréz+Aa, azz&—Aa, a=4.3, ands=0.2. Filled squares indicate the values
of § andA, sampled.

discussed in the previous section. Upon coupling, both theters are now required to fully characterize the fast sub-
saddle-node and external crisis bifurcations move to theystem. Howevery,—y, is approximately constant. Thus, if
right, but the saddle-node bifurcation is affected more tharwe let

the external crisis bifurcation so that-<ysy, and thus a

region of bistability is introduced. The phenomenon of emer- 0=(y1—Y2)/2, (13)
gent bursting is very robust to a change in the coupling

strength. The stronger the coupling, the larger the region of y=(y1+Y2)/2, (12
bistability, similar to the enlargement of the region of bista-

bility shown in Fig. 6. so that

The single-cell fast subsystem lacks bistability only when
«=8+/3/3. So it is natural to ask whether the emergence of
more or less regular bursting persists for values cof Y=y & (14)
>84/3/3. Indeed, it does. For these valuesagfthe relevant 2 '

branch of periodics/chaotics for the single-cell fast subyhen we can ley=y be the primary bifurcation parameter,

system terminates at an internal crisis bifurcation, and wavgq before, and be the secondary bifurcation paraméd@g.
forms for the full system are predominantly fast spikisge  The resulting fast subsystem is

Fig. 1(e)]. When coupled weakly, the relevant branch of

periodics/chaotics, namely, the stable nonsymmetric branch, ay _ &

also terminates at an internal crisis bifurcation. However, as Xn+11= 5 T ¥+ 0+ 5 (Xn1tXn2), (15
coupling increases, the internal crisis bifurcation moves to- 1+X01 2

ward the saddle node and then becomes an external crisis

yi=y+96, (13

bifurcation, at which point emergent bursting can be seen. s — &
The largere, the larger the perturbation needs to be to obtain Xne12= 75 ty= 6t 5 (Xnat X2, (16)
the emergent phenomenon. n.2

where§ is the average value af, based on many iterations
V. ROLE OF HETEROGENEITY of the full two-cell system.

The emergence of bursting from nonbursting cells in pre- Although we will not do so here, the procedure to confirm

viously studied continuous systems depends critically on hetI—he accuracy of the fast subsystem b|furcat|on diagram in
erogeneity in the model parametéiss]. This is the motiva- predicting the full two-cell system behavior would be as fol-
tion to investigate the role of heterogeneity in the modellows. First, the full two-cell system is simulated so tidatan
parameters of the discrete map in promoting emergent bursbe calculatedh priori. This value ofé is then used in Egs.
ing and, by extension, regularizatida4]. We distinguish  (15) and(16) to produce a bifurcation diagram withas the
between heterogeneity in the slow and fast subsystems, bbifurcation parameter. Subsequently,aaposterioricheck of
first discuss the general effect of heterogeneity and the modthe accuracy of the bifurcation diagram can be made by pro-
fications required in the computation of a bifurcation dia-jecting the wave forms of the full system onto the bifurcation
gram. diagrams, shifted appropriately via Eq443) and (14). Pro-

It can be readily verified by numerical simulation thyat  vided extreme heterogeneity is avoided, the bifurcation dia-
and y, are no longer approximately equal when+ a, gram thus obtained indeed can be seen to be a good predictor
and/oro# 05. Thus, it no longer suffices to use as the  of the full system behavior.
single bifurcation parameter in the corresponding fast sub- Heterogeneity in the slow subsystem is achieved by let-
system, as was done in Ed8), (9). Two bifurcation param- ting o, # o in Egs.(6) and(7). Recall that emergent burst-
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ing was shown in the previous section with;=a, study emergent bursting in the map.
=8./3/3 ando;=0,=—0.85. Keeping the values af; We began by carefully constructing a bifurcation diagram
fixed, emergent bursting can be obtained for many choices aif the fast subsystem of a single bursting cell, thereby ex-
o, and o,. The more disparate; and o, the larger the tending Rulkov's analysis of the map. Bursting in a single
resulting value of5. Thus, in this situations can be viewed cell crucially depends on two model ingredients, namely,
as a measure of heterogeneity in the slow subsystem. Figuhistability between a stable fixed point and a periodic or
8(a) summarizes the effect of increased heterogeneity in thehaotic attractor in the fast subsystem of the cell, and a slow
slow subsystem on the size of the region of bistability in theprocess that can switch the system between these states.
fast subsystem bifurcation diagram, measured fyy By changing the model parameters, the bistability in the
— Yec- As & increases, the size of the region of bistability fast subsystem can be removed in a fashion similar to what
decreasesthis is in accordance with the shorter bursts ob-has been done previously for continuous square-wave burst-
served in wave forms obtained for the full two-cell sysfem €rs[2,11-13. When the resulting nonbursting cells were
Although heterogeneity does not significantly affect the sizecoupled through the mean field, bursting was recovered. The
of the region of bistability, it is clear that heterogeneity doesmechanism underlying emergent bursting was revealed by a
not promote emergent bursting, nor bursting in general, ifPifurcation analysis of the coupled fast subsystem. In gen-
contrast to the findings of de Vries and Shernjas] for eral, a two-parameter bifurcation analysis is required to study
continuous systems. a coupled system. However, ideas from the study of continu-
Heterogeneity in the fast subsystem is achieved by lettin@us systems carried over, and it was shown that a one-
a1# a, in Egs.(6) and(7). The effect of this type of hetero- Parameter bifurcation analysis suffices to explain the emer-
geneity can no longer be isolated in one parameter in the fagient bursting phenomenon. In particular, it was found that
subsystentfor each choice ofr; and @,, a new value ofs coupling serves to perturb the system so as to reintroduce a

must be calculated To facilitate a systematic comparison region of bistability. The emergent_bursting phenomen.on is
we let " very robust: the stronger the coupling, the larger the size of

the region of bistability, the longer the active and silent
—0tA 17) phases, and the more regular the bursts. This is in contrast
@1= a7 Ban with previously studied continuous mod¢&x11-13, where
. emergent bursting due to coupling alone is delicate, and ex-
ay=a—A,, (18 ists only over a small range of coupling strengths. In those
A models, heterogeneity in the model parameters is able to res-
and varyA , while keepinga: constant. Figure ® summa- cue emergent bursting over a significant range of coupling
rizes the effect of increased heterogeneify,) in the fast  strengths. In contrast, heterogeneity for the model studied
subsystem on the size of the region of bistability. As beforehere does not promote emergent bursting; in fact, it slightly
as A, increases, the size of the region of bistability de-hinders it.
creases. Thus, heterogeneity in the fast subsystem also doesEven though this paper focused on the phenomenon of

not promote bursting; in fact, it slightly hinders it. emergent bursting, results were obtained that are relevant to
the phenomenon of regularization of synchronized chaotic
VI. DISCUSSION bursts[14]. In particular, the stable nonsymmetrical branch

of periodics/chaotics in the bifurcation diagram of the fast

In this paper, we have continued the study of the simplesubsystem of a pair of cells is shown here. Furthermore, the
two-dimensional map exhibiting bursting introduced by finding that the introduction of heterogeneity in the model
Rulkov [14]. Rulkov studied the map in the context of regu- parameters slightly decreases the size of the region of bista-
larization of synchronized chaotic bursts. Although the re-bility implies that regularization is due to coupling alone.
sults obtained here clarify some details of regularization, the The mechanism responsible for generating the emergent
main focus of this paper is to examine the bursting thabursting shown here depends critically on the fact that the
emerges in a population of nonbursting cells when they ar@onbursting cells were derived from bursting cells by placing
coupled through the mean field and to compare this phenonthem in a parameter regime not too far removed from the
enon to a similar situation in continuous systems. parameter regime where the cells exhibit bursting. As a re-

The analysis of Rulkoy14] revealed that the mechanism sult, the bifurcation structures of the fast subsystem for
of bursting in the map is analogous to the mechanism of d&ursting and nonbursting cells are related, so that modest
certain type of bursting exhibited in many models of differ- changes in just a few model parameters can turn a nonburst-
ential equations, namely, so-called square-wave burf8ihg ing cell into a bursting cell and vice versa. Thus, it is not
For continuous square-wave bursters, it is well known that aurprising that a small perturbation such as that obtained
change in parameters can destroy the bursting behavior. Sefrom coupling between cells produces bursting from non-
eral recent papers have examined diffusively coupled netbursting cells. However, although the mechanism underlying
works of such nonbursting cells, and it has been shown thagmergent bursting appears similar in previously studied con-
bursting can be recovered, albeit under certain conditioninuous systems and the discrete map examined here, there
(see the Introduction for a brief revigwThe analogy be- are some important differences. In particular, the manner in
tween the mechanism underlying bursting in the map andvhich emergent bursting does or does not persist as the cou-
continuous square-wave bursting provided the impetus tpling strength increases appears to be nongeneric, and seems
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to depend on the type of equations and the type of couplingnechanisms underlying emergent oscillations and bursting
used. For example, applying diffusive coupling to the dis-can be unified by some general principles remains an open
crete bursting model does not generate emergent burstinguestion.
nor does applying mean field coupling to the continuous The similarities and differences observed in the behavior
bursting model. In addition, whether or not heterogeneityof discrete and continuous bursting models raise some inter-
plays a crucial role in the emergence of bursting seems t@sting questions. For example, what type of biophysical sys-
depend on the system. tem is captured by the discrete system? Is there a direct con-
Recent studies of the generation of simple oscillations imection between discrete and continuous bursting systems,
networks of electrically coupled nonoscillating cells havegnd, if so, how can discrete maps be generated from bio-
brought out a similar finding, namely, that heterogeneity inphysically based continuous models? The relevance of the
the model parameters may or may not be important, and thafiscrete model to real biophysical systems remains to be
the emergent phenomenon may or may not persist as thgsen. However, studying emergent bursting in a variety of
coupling strength is increased, depending on the dynamics @fystems advances our qualitative understanding of network
the individual cells. For example, Cartwright] and Manor  pehavior and may lead to further insight into how individual

et al. [3] have proposed mechanisms that critically depenctelis can function as a unit when coupled together.
on heterogeneity in the cell parameters, whereas the mecha-

nisms proposed by Sherman and RiffZland Loewenstein

etal. [1] do not require he_terogenerty. Furthermore, the ACKNOWLEDGMENT
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